3.855 \(\int \sec ^3(c+d x) (a+a \sin (c+d x)) \tan ^2(c+d x) \, dx\)

Optimal. Leaf size=84 \[ \frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a \sin (c+d x)+a)}-\frac {a \tanh ^{-1}(\sin (c+d x))}{8 d} \]

[Out]

-1/8*a*arctanh(sin(d*x+c))/d+1/8*a^3/d/(a-a*sin(d*x+c))^2-1/4*a^2/d/(a-a*sin(d*x+c))-1/8*a^2/d/(a+a*sin(d*x+c)
)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {2836, 12, 88, 206} \[ \frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a \sin (c+d x)+a)}-\frac {a \tanh ^{-1}(\sin (c+d x))}{8 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3*(a + a*Sin[c + d*x])*Tan[c + d*x]^2,x]

[Out]

-(a*ArcTanh[Sin[c + d*x]])/(8*d) + a^3/(8*d*(a - a*Sin[c + d*x])^2) - a^2/(4*d*(a - a*Sin[c + d*x])) - a^2/(8*
d*(a + a*Sin[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2836

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d*x)/b
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps

\begin {align*} \int \sec ^3(c+d x) (a+a \sin (c+d x)) \tan ^2(c+d x) \, dx &=\frac {a^5 \operatorname {Subst}\left (\int \frac {x^2}{a^2 (a-x)^3 (a+x)^2} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {a^3 \operatorname {Subst}\left (\int \frac {x^2}{(a-x)^3 (a+x)^2} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {a^3 \operatorname {Subst}\left (\int \left (\frac {1}{4 (a-x)^3}-\frac {1}{4 a (a-x)^2}+\frac {1}{8 a (a+x)^2}-\frac {1}{8 a \left (a^2-x^2\right )}\right ) \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a+a \sin (c+d x))}-\frac {a^2 \operatorname {Subst}\left (\int \frac {1}{a^2-x^2} \, dx,x,a \sin (c+d x)\right )}{8 d}\\ &=-\frac {a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a^3}{8 d (a-a \sin (c+d x))^2}-\frac {a^2}{4 d (a-a \sin (c+d x))}-\frac {a^2}{8 d (a+a \sin (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 74, normalized size = 0.88 \[ \frac {a \tan ^4(c+d x)}{4 d}-\frac {a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac {a \tan (c+d x) \sec ^3(c+d x)}{4 d}-\frac {a \tan (c+d x) \sec (c+d x)}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3*(a + a*Sin[c + d*x])*Tan[c + d*x]^2,x]

[Out]

-1/8*(a*ArcTanh[Sin[c + d*x]])/d - (a*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (a*Sec[c + d*x]^3*Tan[c + d*x])/(4*d)
 + (a*Tan[c + d*x]^4)/(4*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 135, normalized size = 1.61 \[ \frac {2 \, a \cos \left (d x + c\right )^{2} - {\left (a \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - a \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - a \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 6 \, a \sin \left (d x + c\right ) + 2 \, a}{16 \, {\left (d \cos \left (d x + c\right )^{2} \sin \left (d x + c\right ) - d \cos \left (d x + c\right )^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/16*(2*a*cos(d*x + c)^2 - (a*cos(d*x + c)^2*sin(d*x + c) - a*cos(d*x + c)^2)*log(sin(d*x + c) + 1) + (a*cos(d
*x + c)^2*sin(d*x + c) - a*cos(d*x + c)^2)*log(-sin(d*x + c) + 1) - 6*a*sin(d*x + c) + 2*a)/(d*cos(d*x + c)^2*
sin(d*x + c) - d*cos(d*x + c)^2)

________________________________________________________________________________________

giac [A]  time = 0.22, size = 91, normalized size = 1.08 \[ -\frac {2 \, a \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) - 2 \, a \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (a \sin \left (d x + c\right ) - a\right )}}{\sin \left (d x + c\right ) + 1} + \frac {3 \, a \sin \left (d x + c\right )^{2} - 14 \, a \sin \left (d x + c\right ) + 7 \, a}{{\left (\sin \left (d x + c\right ) - 1\right )}^{2}}}{32 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/32*(2*a*log(abs(sin(d*x + c) + 1)) - 2*a*log(abs(sin(d*x + c) - 1)) - 2*(a*sin(d*x + c) - a)/(sin(d*x + c)
+ 1) + (3*a*sin(d*x + c)^2 - 14*a*sin(d*x + c) + 7*a)/(sin(d*x + c) - 1)^2)/d

________________________________________________________________________________________

maple [A]  time = 0.24, size = 100, normalized size = 1.19 \[ \frac {a \left (\sin ^{4}\left (d x +c \right )\right )}{4 d \cos \left (d x +c \right )^{4}}+\frac {a \left (\sin ^{3}\left (d x +c \right )\right )}{4 d \cos \left (d x +c \right )^{4}}+\frac {a \left (\sin ^{3}\left (d x +c \right )\right )}{8 d \cos \left (d x +c \right )^{2}}+\frac {a \sin \left (d x +c \right )}{8 d}-\frac {a \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c)),x)

[Out]

1/4/d*a*sin(d*x+c)^4/cos(d*x+c)^4+1/4/d*a*sin(d*x+c)^3/cos(d*x+c)^4+1/8/d*a*sin(d*x+c)^3/cos(d*x+c)^2+1/8*a*si
n(d*x+c)/d-1/8/d*a*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 84, normalized size = 1.00 \[ -\frac {a \log \left (\sin \left (d x + c\right ) + 1\right ) - a \log \left (\sin \left (d x + c\right ) - 1\right ) - \frac {2 \, {\left (a \sin \left (d x + c\right )^{2} + 3 \, a \sin \left (d x + c\right ) - 2 \, a\right )}}{\sin \left (d x + c\right )^{3} - \sin \left (d x + c\right )^{2} - \sin \left (d x + c\right ) + 1}}{16 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^2*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/16*(a*log(sin(d*x + c) + 1) - a*log(sin(d*x + c) - 1) - 2*(a*sin(d*x + c)^2 + 3*a*sin(d*x + c) - 2*a)/(sin(
d*x + c)^3 - sin(d*x + c)^2 - sin(d*x + c) + 1))/d

________________________________________________________________________________________

mupad [B]  time = 14.46, size = 167, normalized size = 1.99 \[ -\frac {a\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{4\,d}-\frac {\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{4}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}+\frac {5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2}-\frac {a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{2}+\frac {a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}}{d\,\left (-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((sin(c + d*x)^2*(a + a*sin(c + d*x)))/cos(c + d*x)^5,x)

[Out]

- (a*atanh(tan(c/2 + (d*x)/2)))/(4*d) - ((a*tan(c/2 + (d*x)/2))/4 - (a*tan(c/2 + (d*x)/2)^2)/2 + (5*a*tan(c/2
+ (d*x)/2)^3)/2 - (a*tan(c/2 + (d*x)/2)^4)/2 + (a*tan(c/2 + (d*x)/2)^5)/4)/(d*(2*tan(c/2 + (d*x)/2) + tan(c/2
+ (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^3 + tan(c/2 + (d*x)/2)^4 + 2*tan(c/2 + (d*x)/2)^5 - tan(c/2 + (d*x)/2)^6 -
 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5*sin(d*x+c)**2*(a+a*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________